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Proof: The solution for the x2 component of the system with ad-
ditive impulses can be written explicitly as

x2(t) = e(k+1)h�2tx2(0) 8t 2 (kh; (k + 1)h] : (31)

Indeed, for this signal we have _x2 = �2x2 on the intervals (kh; (k +
1)h], k � 0; and at times kh, k � 0 we have that

x2(kh) + dk = ekh�2khx2(0) + (1� e�h)e�(k�1)hx2(0)

= e�(k�1)hx2(0) = x+2 (kh): (32)

To see that x1(t) = etx1(0) is a solution to the system (28) with
additive impulses, note that this function satisfies x1(t)x2(t) =
2e�(t�kh) 2 [1; 2] for all t 2 (kh; (k + 1)h] since e�h � 1=2.
Therefore, g(x1(t)x2(t)) = 1, 8t � 0 and we have that
_x1 = x1 = g(x1x2)x1.

B. Additive Cascades

Consider the hybrid system

_x1 = g(x1x2)x1

_x2 = � 2x2 _z = �z

x+2 =x2 + z (33)

with reset times tk = kh where k ranges over the nonnegative inte-
gers. This system is the additive cascade of GES subsystems since the
z-subsystem is GES and the (x1; x2) subsystem is GES when z = 0.
The following result follows from Proposition 6.
Corollary 5: Under Assumption 3, for each reset period h 2

(0; log(2)], and initial conditions x1(0) 6= 0, x2(0) = 2e�h=x1(0),
z(0) = (1�e�h)ehx2(0), a solution of (33) satisfies x1(t) = etx1(0)
for all t � 0.

V. CONCLUSION

We have extended the results in [7] by constructing an example
where the disturbance can be a simple decaying exponential, and by
making explicit that the system can be GES with zero input and can
have linear sector growth. This enables making observations about
additive cascades of globally exponentially stable systems, and about
the gradients of Lyapunov functions for globally exponentially stable
systems with linear sector growth. We have also provided similar
examples for discrete-time and hybrid systems.
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Pseudospectral Methods for Optimal Motion Planning of
Differentially Flat Systems

I. Michael Ross and Fariba Fahroo

Abstract—This note presents some preliminary results on combining
two new ideas from nonlinear control theory and dynamic optimization.
We show that the computational framework facilitated by pseudospec-
tral methods applies quite naturally and easily to Fliess’ implicit state
variable representation of dynamical systems. The optimal motion plan-
ning problem for differentially flat systems is equivalent to a classic
Bolza problem of the calculus of variations. In this note, we exploit
the notion that derivatives of flat outputs given in terms of Lagrange
polynomials at Legendre–Gauss–Lobatto points can be quickly computed
using pseudospectral differentiation matrices. Additionally, the Legendre
pseudospectral method approximates integrals by Gauss-type quadrature
rules. The application of this method to the two-dimensional crane model
reveals how differential flatness may be readily exploited.

Index Terms—Differential flatness, optimal control theory, pseudospec-
tral methods.

I. INTRODUCTION

Differential flatness of nonlinear systems was introduced by Fliess
et al. [1] as part of a notion that certain differential algebraic repre-
sentations of dynamical systems are equivalent [2], [3]. The “classic”
state-space representation, _xxx = f(xxx; uuu), xxx 2 N , uuu 2 N is gener-
alized by the differential algebraic system, f(xxx; _xxx; uuu; _uuu; . . . ; uuu(r)) = 0,
where uuu(r) is the rth derivative of uuu. According to Fliess et al., a dy-
namical system is said to be differentially flat if there exists an output,
y = c(xxx; uuu; _uuu; . . . ; uuu(�)), y 2 N such that the state and controls
can be written as xxx = a(y; _y; . . . ;y(�)); uuu = b(y; _y; . . . ;y(�+1)).
Although checking for flatness is an open issue, a growing number
of dynamical systems in engineering have been shown to be flat, (see
[3] and the references contained therein). For a flat system, the mo-
tion planning problem simply reduces to finding a sufficiently smooth
output, t 7! y(t), that satisfies the boundary conditions in output space.
In principle, finding such smooth functions is not difficult, since the
output can be represented in terms of a polynomial with unknown co-
efficients. These coefficients can then be determined by imposing the
condition that the polynomial should satisfy the boundary conditions;
however, when differentiating polynomials, it is extremely important
to be cognizant of instabilities like the Runge phenomenon [4], [5] as-
sociated with interpolating polynomials at equidistant points. Further,
in many applications, particularly those arising in astronautics, it is not
enough to find feasible trajectories but optimal trajectories that opti-
mize a scalar cost functional given in a Bolza form. For differentially
flat systems, the optimal control problem reduces to a classic uncon-
strained calculus-of-variations problem [6].

In this note, we show that for a differentially flat system, an op-
timal smooth output function and its derivatives can be easily obtained
by pseudospectral methods [4], [5], [7]. Pseudospectral methods are
based on approximating the underlying functions by interpolating poly-
nomials which interpolate these functions at some specially chosen
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nodes. These nodes are the zeros of orthogonal polynomials (or their
derivatives) such as Legendre polynomials (Legendre–Gauss points)
or Chebyshev polynomials (Chebyshev–Gauss points). Recently, pseu-
dospectral methods have been used very effectively in solving a wide
variety of nonlinear optimal control problems as illustrated in [8]–[13].
Here, we show that exploiting differential flatness provides a new way
of solving motion planning problems. Our work is similar in spirit to
that of Milam et al. [14] and Petit et al. [15] but we will show that
our technique is markedly different yet simpler to implement than their
B-spline approach. Further, since differentially flat systems are suffi-
ciently smooth, pseudospectral methods provide “exponential conver-
gence rates” for analytic functions and O(N�m) for every m for C1

functions [5] where N is the order of the interpolating polynomial.
This property, known as spectral accuracy, is essentially an outcome
of the low Lebesgue constants [4] for Legendre–Gauss and Cheby-
shev–Gauss node distributions. Spectral accuracy is particularly impor-
tant for systems where flat outputs cannot be obtained but an output that
partially inverts the dynamics can be found and exploited. In this case,
the dynamical constraints can be reduced but not eliminated. Potential
convergence problems resulting from discretizing the transformed dy-
namics are handled well by pseudospectral methods.

II. PROBLEM FORMULATIONS

A “classic” smooth optimal control problem can be stated as follows.
Problem C: Determine the trajectory-control pair, [�0; �f ] 3 � 7!

fxxx 2 N ; uuu 2 N g and possibly the clock times �0 and �f , that
minimize the Bolza cost functional

J [xxx(�); uuu(�); �0; �f ]

= E(xxx(�0); xxx(�f ); �0; �f ) +
�

�

F (xxx(�); uuu(�))d� (1)

subject to the classic dynamic constraints

_xxx(�) = f(xxx(�); uuu(�)) 8 � 2 (�0; �f ) (2)

and end point constraints

el � e (xxx(�0); xxx(�f ); �0; �f ) � eu: (3)

For simplicity in presentation, we assume all functions to be
C1-smooth. According to Fliess et al. [1], the dynamical system
described by (2) is differentially flat if there exists a variable y 2 N

and a function c(�)

y = c(xxx; uuu; _uuu; . . . ; uuu(�)) (4)

such that

xxx = a(y; _y; . . . ;y(�)) uuu = b(y; _y; . . . ;y(�+1)) (5)

where � and � are finite positive integers that denote the number of
derivatives of the respective variables. The variable y is called a flat or
linearizing output. For ease of notation, we let s = �+1 and denote the
flat output and its derivatives by the composite variable, z 2 (s+1)N

z = [y; _y; . . . ;y(s)]T (6)

so that a(�) : z! xxx and b(�) : z! uuu. For a differentially flat system,
Problem C can now be replaced by the following.
Problem DF: Determine the smooth function, [�0; �f ] 3 � 7! y 2
N , and possibly the clock times, �0 and �f , that minimize the classic

Bolza cost functional [6]

~J [y(�); �0; �f ] = ~E(z(�0); z(�f ); �0; �f ) +
�

�

~F (z(�))d� (7)

subject to the end point constraints

~el � ~e (z(�0); z(�f ); �0; �f ) � ~eu (8)

where ~E(�), ~F (�) and ~e(�) denote functions obtained from E(�), F (�)
and e(�), respectively, by an appropriate substitution of (5) in (1) and
(3). Of course, by the definition of differential flatness, (2) is automat-
ically satisfied and, hence, is not a constraint.

III. LEGENDRE PSEUDOSPECTRAL METHOD

For the purpose of clarity and brevity, we discuss only the Le-
gendre pseudospectral (PS) method. Let LN(t) be the Legendre
polynomial of degree N on the interval [�1; 1]. In the Legendre
pseudospectral method, the Legendre–Gauss–Lobatto (LGL) points
[7], tl, l = 0; . . .N are used. These points are given by t0 = �1,
tN = 1; and for 1 � l � N � 1, tl are the zeros of _LN ; the derivative
of the Legendre polynomial, LN : For Problem C, the Legendre pseu-
dospectral method offers an approximation for evaluating the integral
by Gauss quadratures while the differential constraint is approximated
by driving the residuals to zero at the LGL points. In this manner,
the Legendre PS method unifies discretization of both the integrals
and the derivatives, and in both cases the discretizations are highly
accurate. Further details on the approximation method for Problem C
are described in [8], [12], and [16]. Here, we focus our attention to
Problem DF and the transformations necessary to cast Problem C to
this format.

Since the LGL node points lie in the computational interval [�1; 1],
in the first step of this method, the following affine transformation is
used to scale the domain, [�0; �f ], � = ((�f � �0)t+ (�f + �0))=2:
Next, the vector-valued function, t 7! y(t), is written as some N th
degree vector-valued polynomial of the form

y(t) =

N

l=0

yl�l(t) (9)

where, yl := y(tl) are the unknown coefficients, and for
l = 0; 1; . . . ; N

�l(t) =
1

N(N + 1)LN(tl)

(t2 � 1) _LN(t)

t� tl

are the Lagrange polynomials of order N that satisfy the Kronecker
identity, �l(tk) = �lk; where �lk = 1 for l = k and is zero, otherwise.
The composite variable z is then obtained simply by differentiating (9)

_y(t) =

N

l=0

yl _�l(t); . . . ;y
(s)(t) =

N

l=0

yl�
(s)
l (t) (10)

where as before the superscript s denotes the sth derivative. It is ap-
parent that we must choose N � s + 1. Evaluating the derivatives at
tk results in a matrix multiplication of the following form:

_y(tk) =

N

l=0

D1;klyl; . . . ;y
(s)(tk) =

N

l=0

Ds;klyl (11)

where Di;kl;, i = 1; . . . ; s are the entries of (N + 1) � (N + 1)
differentiation matrices Di. The matrix, D1 is given by [7]

D1 := [D1;kl] :=

L (t )
L (t )

� 1
t �t

; k 6= l

�N(N+1)
4

; k = l = 0
N(N+1)

4
; k = l = N

0; otherwise.

(12)

It can be shown that Di = Di where the superscript denotes matrix
powers. Thus, D2 is obtained by simply squaring D1, while D3 =
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Fig. 1. Results for the crane problem.

D3 and so on. Since Y = [y0;y1; . . . ;yN ] 2 N �(N+1) is an
equivalent representation of the vector-valued polynomial given by (9),
it follows that

Yi = [y0; y1; . . . ;yN ][Di]T (13)

is an equivalent representation of the vector-valued polynomials, y(i),
i = 1; . . . ; s given by (10). In other words, the derivatives of the flat
outputs at the LGL points are obtained by a simple matrix multiplica-
tion of the flat output with the appropriate order of the differentiation
matrix. This is better illustrated as follows: LetZ = [z0; z1; . . . ; zN ] 2
(s+1)N �(N+1) [see (6)]. Then

Z = Y
T
0 ;Y

T
1 ; . . . ;Y

T
s

T

= (E 
 [y0; y1; . . . ;yN ])D (14)

where E is a (s+1)�1 vector of ones,
 denotes the Kronecker product
andD is a (s+ 1)(N + 1)� (s+ 1)(N + 1) block diagonal matrix
where each block is (N+1)� (N+1) and the (s+1) block diagonal
entries are given by [Di]T , i = 0; 1; . . . ; s. An interesting situation
arises when the clock times are fixed and the end point constraints in
output space are given by linear inequalities of the form [cf. (8)]

~el � A [ z(�0) z(�f) ] � ~eu (15)

where A is a matrix of appropriate dimension. The motion planning
problem is now reduced to solving a linear matrix inequality of finding
the Nu � (N + 1) parameters [y0; y1; . . . ;yN ] such that

~el � B[y0; y1; . . . ;yN ] � ~eu (16)

where B is obtained from (14) and (15). Recall that N is a design pa-
rameter and must be chosen such that N � s + 1. For a point-to-
point motion planning problem in output space, (16) reduces to simply
solving a full-rank linear matrix equation for N = s + 1, which can
obviously be done in real-time; however, a better alternative might be

to choose N � s and determine the extra degrees of freedom by min-
imizing some cost functional, such as, for example

xxx
T
f xxxf +

�

�

uuu
T (�)uuu(�)dt: (17)

In any case, the optimal motion planning problem requires that the in-
tegral in (7) be evaluated in terms of the values of the flat outputs and
its derivatives at the LGL points. While other polynomial approxima-
tions [14] can only use low-order quadrature schemes, in pseudospec-
tral methods, high-order quadrature rules such as the Gauss–Lobatto
integration rule can be naturally employed. The integral (7) is approx-
imated by a finite sum which is exact for integrands which are polyno-
mials of degree 2N � 1

~J [Y; �0; �f ] � ~EN(z0; zN ; �0; �f ) +

N

k=0

~FN(zk)wk (18)

where wk are the LGL weights [7]

wk :=
2

N(N + 1)

1

[LN(tk)]2
; k = 0; 1; . . . ; N: (19)

Thus, Problem DF is discretized by the following mathematical pro-
gramming problem.
Problem DFN : Find Y = [y0; y1; . . . ;yN ] 2 N �(N+1) and

possibly �0 and �f that minimize

~JN [Y; �0; �f ] =

N

k=0

~F (zk)wk + ~E(z0; zN ; �0; �f ) (20)

subject to

~el � ~e (z0; zN ; �0; �f ) � ~eu: (21)

If ~F and ~E are linear in zk , then for fixed clock times the problem
reduces to a linear programming problem for linear conditions in output
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space. In general, this is a nonlinear programming problem which can
be solved using commercial off-the-shelf packages like SNOPT [17].
It is worth noting that in our method, the original state and control
variables can be easily recovered by using the differentiation matrices
and the functions a(�) and c(�).

IV. EXAMPLE: THE CRANE PROBLEM

A two-dimensional state model of a trolley-load of a crane [1], [18]
is given by

m�x =�T sin � (22)

m�z =�T cos � +mg (23)

x =R sin � +D (24)

z =R cos � (25)

where (x; z) are the coordinates of the load, m, which is connected to
a trolley by a rope of length R and tension T . The trolley is at some
distance D along the x-axis while the load is at an angle � away from
the vertical; see [1] and [18] for further details. As shown in these ref-
erences, the system is differentially flat with a linearizing output given
by y = [x; z]T .

The basic control problem is to carry the load m from (R1; D1)
to (R2; D2) while minimizing oscillations at the end of the transport.
Although the oscillations provide a natural way to formulate a cost
functional, we use a slightly modified “indirect” approach suggested
by Fliess et al. to facilitate a quick comparison. That is, instead of
finding a smooth curve [�0; �f ] 3 � 7! y(� ) such that dry=d�r(�0) =
dry=d� r(�f) = 0 for r = 1; 2; 3; 4, we choose to minimize

J = _yT (�0) _y(�0) + _yT (�f) _y(�f )

+�yT (�0)�y(�0) + �yT (�f)�y(�f ) (26)

subject to the endpoint constraints

dry

d� r
(�0) =0; r = 3; 4 (27)

dry

d� r
(�f) =0; r = 3; 4: (28)

The “high-level” control is obtained by [18]

D(�) = y1(�)�
�y1(�)y2(�)

�y2(�)� g
(29)

R2(�) = y22(�) +
�y1(�)y2(�)

�y2(�)� g

2

: (30)

Recall that in our method, the derivatives are obtained by a simple ma-
trix multiplication of the data at the LGL points. Fig. 1 displays plots
in a form suitable for comparison with [1], where R1 = R2 = 10 m,
D1 = 0, D2 = 20 m, and g = 9:8 m=s2, �f = 10 s. An additional
constraint �z < g is also imposed to keep the rope tension positive.
The number of LGL points were arbitrarily chosen to be N = 11. Al-
though the shape of our plots is similar to that of Fliess et al., notice
that our curves are a little different. This may be attributed to our use of
higher-order polynomials where the extra degrees of freedom are used
for optimization; hence, our method generates fewer oscillations as ap-
parent from the plot of the vertical deviation angle, �.

V. CONCLUSION AND FURTHER WORK

Pseudospectral (PS) methods offer a natural way to solve nonlinear
control problems where the dynamics are described in terms of a dif-
ferential-algebraic state space model. For flat systems, the optimal mo-
tion planning problem can be readily solved using PS methods. The

computational ease derives from the use of higher order differentia-
tion matrices and quadrature rules which transform the problem to a
nonlinear programming problem with the values of the output vari-
ables at the quadrature nodes as the unknowns. While the notion of
flatness is a promising idea, it is unclear at this stage whether op-
timal trajectories should be computed in (the flat) output space. In
state–space, the boundary conditions are typically stated simply (e.g.,
linear boundary conditions) and have physical meaning. The flat output
transforms these conditions to a possibly complex (e.g., nonlinear) set
of end point conditions [compare (3) to (8)]. The same arguments hold
for the transformation of the cost functional. Thus, it is possible that
flatness parametrization might actually worsen real-time trajectory op-
timization. These issues are further elaborated in [19] with additional
examples.
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