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Multirevolution, very low-thrust trajectory optimization problems have long been considered difficult problems
due to their large time scales and high-frequency responses. By relating this difficulty to the well-known problem of
aliasing in information theory, an antialiasing trajectory optimization method is developed. The method is based on
Bellman’s principle of optimality and is extremely simple to implement. Appropriate technical conditions are derived
for generating candidate optimal solutions to a high accuracy. The proposed method is capable of detecting
suboptimality by way of three simple tests. These tests are used for verifying the optimality of a candidate solution
without the need for computing costates or other covectors that are necessary in the Pontryagin framework. The tests
are universal in the sense that they can be used in conjunction with any numerical method whether or not antialiasing
is sought. Several low-thrust example problems are solved to illustrate the proposed ideas. It is shown that the
antialiased solutions are, in fact, closed-loop solutions; hence, optimal feedback controls are obtained without
recourse to the complexities of the Hamilton–Jacobi theory. Because the proposed method is easy to implement, it can
be coded on an onboard computer for practical space guidance.

I. Introduction

C ONTINUOUS-THRUST trajectory optimization problems
have served as one of the motivating problems for optimal

control theory since its inception [1–4]. The classic problem posed
by Moyer and Pinkham [2] is widely discussed in textbooks [1,3,4]
and research articles [5–7].When the continuity of thrust is removed
from such problems, the results can be quite dramatic as illustrated in
Fig. 1. This trajectory was obtained using recent advances in optimal
control techniques and is extensively discussed in [8]. In canonical
units, the problem illustrated in Fig. 1 corresponds to doubling the
semimajor axis (a0� 1, af � 2), doubling the eccentricity
(e0� 0:1, ef � 0:2), and rotating the line of apsides by 1 rad. Note
that the extremal thrust steering program for minimizing fuel is not
tangential over a significant portion of the trajectory. Furthermore,
the last burn is a singular control as demonstrated in Fig. 2 by the
vanishing of the switching function. Although such finite-thrust
problems can be solved quite readily nowadays, it has long been
recognized [9–11] that as the thrust authority is reduced, new
problems emerge. These well-known challenges chiefly arise as a
result of a long flight timemeasured in terms of the number of orbital
revolutions. Consequently, such problems are distinguished from
finite-thrust problems as low-thrust problems although the boundary
between finite thrust and low thrust is not altogether sharp.

Although ad hoc techniques may circumvent some of the low-
thrust challenges, it is not quite clear if the solutions generated from
such methods are verifiably optimal. As detailed in [8], the
engineering feasibility of a spacemission is not dictated by trajectory
generation, but by optimality. This is because fuel in space is
extraordinarily expensive as the cost of a propellant is driven by the
routine of space operations, or the lack of it, and not the chemical
composition of the fuel. In an effort to circumvent ad hoc techniques
to efficiently solve emerging problems in finite- and low-thrust
trajectory optimization, NASA brought together leading experts in

the field to exchange ideas over several workshops. These
workshops, held over 2003–2006, further clarified the scope of the
problems, and ongoing efforts to address them are described in [12].

From a practical point of view, the goal is to quickly obtain
verifiably optimal or near-optimal solutions to finite- and low-thrust
problems so that alternative mission concepts can be analyzed
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Fig. 2 Extremal thrust acceleration (control) program t 7 !u and the
corresponding switching function t 7 !s for the trajectory shown in Fig. 1.
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Fig. 1 A benchmark minimum-fuel finite-thrust orbit transfer
problem.
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efficiently. The crux of the problem can be described as follows: The
difficulties in solving space trajectory optimization problems are the
difficulties associated with solving optimal control problems. Thus,
the Hamilton–Jacobi–Bellman framework, or dynamic program-
ming, is immediately ruled out as a viable method [8,13]. The
Pontryagin framework, frequently called an indirect method in
computational techniques [14,15], has substantial detractions that
chiefly arise from the symplectic structure of the Hamiltonian system
[3,13]. The neo–Bernoulli–Euler framework [16–18], variations of
which are called direct methods in computational techniques, offers
the best chance for solving optimal control problems [13,15],
particularly through an application of the Covector Mapping
Principle [7,13,16,18,19]. Among direct methods, direct collocation
methods are industry-standard techniques and are available through
powerful software packages such as OTIS [20] and SOCS [21].
When traditional direct collocationmethods are applied to low-thrust
problems, the resulting nonlinear programming (NLP) problem
grows substantially large to meet reasonable accuracy requirements
[22]. Consequently, large-scale NLP solvers are critical to the
success of this approach. As a matter of fact, optimal control
problems have been one of the major motivations for research in
large-scale NLP methods [23]. An excellent overview of the
challenges in solving such problems is described by Betts [14,15].
Other relevant issues, specific to space trajectory optimization
problems, are discussed in [8].

In this paper, we introduce a simple technique for solving low-
thrust trajectory optimization problems. In exploiting Bellman’s
principle of optimality, our proposedmethod rapidly generates high-
accuracy solutions to low-thrust problems. Our approach does not
require large-scale NLP solvers and is based on interpreting a low-
order discrete solution to the problem as an “alias” to a high-order
solution. As these repeatedly calculated solutions can be obtained
within fractions of a second to a few seconds, even when
implemented within a MATLABTM environment running on legacy
computer hardware, they are real-time solutions. Thus, feedback
guidance is obtained quite simply by real-time computation and
updates to the optimal solution [8,24,25]. A brief introduction to the
method has also been presented in [26].

It is important to note that while our proposed method does not
require large-scale NLP solvers for a single agent (i.e., vehicle)
problem, it does not mean that large-scale NLP solvers are
unnecessary for optimal control. On the contrary, the ubiquity of
large-scale solvers implies that our method can be easily applied to
solve multi-agent problems such as formation design and control,
autonomous collision avoidance, and other emerging problems as
illustrated in [8,27–30].

II. Aliasing and Optimal Control
Consider the discretization (sampling) of two continuous

functions (signals) shown in Fig. 3. It is clear that both functions
are indistinguishable (or aliases of one another) when discretized.
This well-known phenomenon in digital information theory causes
high-frequency signals to be aliased with low-frequency signals
resulting in an incorrect reconstruction of the analog signal. If the
high-frequency signal is noise and the low-frequency signal is
genuine information, a simple remedy for aliasing is low-pass
filtering. If high-frequency components are necessary for signal
reconstruction, then the well-known sampling theorem in
information theory (attributed to Nyquist, Shannon, Whittaker, and
others [31]) states the following:

Theorem 1 (Nyquist–Shannon): For reconstructing a band-limited
analog signal, the sampling frequency of the digitizer must be greater
than twice the signal bandwidth.

In applying this theorem to low-thrust multirevolution orbit
transfer problems, it appears that a sufficiently large grid is needed to
capture the “high-frequency” information of orbital revolutions.
Deferring a discussion of the specifics to later sections, let us first
illustrate this “signal-processing” notion as it applies to optimal
control. To this end, consider the simple optimal control test
problem:

�T�

8>>><
>>>:

x 2 R; u 2 R
Minimize J�x���; u���� �

R
1
�1�x�t� � sin��t��2 dt

Subject to _x�t� � sin�4�x�t�� � u�t�
x��1� � 0

A 15-point discrete-time solution for a candidate optimal control
u�ti�, i� 1; . . . ; 15 is shown in Fig. 4. The details of how this
solution was obtained are irrelevant to this part of the discussion and
are hence deferred. Also shown in Fig. 4 are three suggestions for
reconstructing the continuous-time control, ��1; 1� 3 t7!u. In
principle, one could argue that all three reconstructions are equally
valid prima facie. Arguably, an ad hoc approach to picking the best
reconstruction is to numerically propagate the differential equation,

_x� sin�4�x� � u�t�; x��1� � 0

for all three reconstructions, u�t� � u1�t�, u2�t�, and u3�t�, and then
compare the propagated trajectories with the discrete-time trajectory
at all discrete points ti, i� 1; . . .; n, and/or just the final time. This
concept is illustrated in Fig. 5. It is clear from Fig. 5 that all three
interpolants produce the same qualitative solution. However, none of
the continuous-time reconstructions match the discrete-time
trajectory. Assuming that this matching is required, one could now
argue that 15 points were insufficient to meet accuracy requirements
and thus seek to resolve the problem for a higher number of points.
This is the concept upon which standard mesh refinement principles
are based [15,32]. This approach has the potential to generate a very
large-scale optimization problem.

Now, it can be easily verified that the exact solution to problem T
has the following analytical form:

x	�t� � sin��t� u	�t� � � cos��t� � sin�4�x	�t��

A plot of the exact optimal control is shown in Fig. 6 along with the
discrete-time solution previously depicted in Fig. 4. It is apparent
from this figure that the 15-point discrete-time controller lies on the
analytical solution. That is, pointwise convergence was indeed
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Fig. 3 Aliasing in discretization; stars denote the discretization points.
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Fig. 4 Continuous-time reconstructions of a control trajectory using
various interpolation schemes.
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obtained with just 15 points. In comparing Fig. 6 with Fig. 4, it is
clear that none of the reconstruction methods generated the true
solution despite the fact that the solution had converged strongly
(pointwise). This phenomenon is exactly the same as the aliasing
problem illustrated in Fig. 3. Consequently, in taking a cue from the
sampling theorem, one can conclude that a larger number of points
are necessary to obtain lower “granularity.” The 60-point solution,
shown in Fig. 7, illustrates how the high-frequency signal is well
represented. This problem illustrates, by way of a knowledge of the
exact solution, a connection between the sampling theorem and a
generic mesh refinement method that calls for increasing the number
of sample points. Although 60 “nodes” are by no means large scale,
this example illustrates the main point that the 15-node solution is an
alias of the 60-node solution, and that aliasing has indeed occurred in
an optimal control problem.

III. Antialiasing via Bellman’s Principle
A simple remedy for aliasing in optimal control is to refine the

mesh along the lines implied by the Nyquist–Shannon sampling
theorem. Because problem T is scalar in its state and control
variables, the size of the optimization problem is small evenwhen the
mesh size is increased from 15 to 60 nodes. For more realistic
problems, one can easily conceive mesh sizes of several hundred to
thousands of nodes. This generates a large-scale nonlinear
programming problem. Large-scale NLPs are now quite common,
thanks to a substantial progress in numerical techniques for

optimization, and the continuing exponential growth of computer
processing capabilities. For example, Gill et al [23] solved over a
thousand example problems all with up to 40,000 variables and
constraints, while Betts and Erb [22] solved a complex trajectory
optimization problem with over 200,000 variables and about
150,000 constraints. Ferris andMunson [33] demonstrate techniques
for solving 10
 106 variable quadratic programming problems. As
impressive as these numbers are, it is possible to reduce the size of a
discrete optimal control problem by incorporating Bellman’s
principle of optimality as part of an antialiasing technique. Bellman’s
principle can be stated as follows:

Principle of optimality: Given an optimal trajectory from a point A
to a point B, then the trajectory to point B from a point C lying on the
optimal trajectory is also optimal.

Based on the principle of optimality, we propose the following
antialiasing Bellman (a2B) algorithm:
a2B algorithm:
1) Solve the problem for a low number of nodesn. This generates a

discrete-time solution, fxi;uigni�0 corresponding to discrete times
ftigni�0.

2) Partition the time interval �t0; tn� into NB Bellman segments,
t0 < t

1 < � � � < tNB � tn. These segments need not be uniformly
spaced.

3) Propagate the differential equation from t0 to t
1 using x0 as the

initial condition and any method of continuous-time reconstruction
of the controls, u1�t�, t 2 �t0; t1� based on fuigni�0. That is, solve the
initial value problem,

_x� f�x;u1�t��; x�t0� � x0 (1)

This step generates a continuous-time trajectory, x1�t�, t 2 �t0; t1�.
This propagation is done numerically via some high-precision
propagator, say the standard 4=5Runge–Kutta method.

4) Set x0� x1�t1� and t0� t1 and go to step 1; that is, set a new
initial condition as the value of the integrated state at the end of the
period �t0; t1� and solve the problem again for n (which continues to
be low). This generates a new sequence fxi;uigni�0 corresponding to
new discrete times ftigni�0, etc.

5) The algorithm stops at the NBth sequence when the final
conditions are met. The candidate optimal trajectory is given by the
Bellman chain fx1�t�; t 2 �t0; t1�;x2�t�; t 2 �t1; t2�; � � � xNB�t�; t 2
�tNB�1; tNB �g :� xB�t�, t 2 �t0; tf�. Similarly, the corresponding
controls are given by fu1�t�; t 2 �t0; t1�;u2�t�; t 2 �t1; t2�; � � �uNB�t�;
t 2 �tNB�1; tNB �g :� uB�t�, t 2 �t0; tf�.

Remark: It is clear that the practical requirements for our algorithm
are an integrator and a legitimate trajectory optimization solver for
some small n. Later, we describe several variants of the algorithm,
one of which does not even require an integrator. Thus, the only true
requirement is an ability to solve discrete optimal control problems
for some n. There are a plethora ofmethods and software available to
solve this problem; see [12]. In principle, any of thesemethods can be
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Euler methods are frequently used in testing large sparse NLPs, in
electrical engineering, and the so-called model-predictive control
methods. Because convergence of the Euler method is onlyO�h�, it
is apparent that it is not a goodmethod to be used in conjunction with
oura2B algorithm. TheHermite–Simpson directmethod, initiated by
Hargraves and Paris [38] based on the work of Dickmanns and Well
[39], is widely used and implemented in the software packages OTIS
[20] and SOCS [21]. Although the Hermite–Simpson method is a
three-stage RK method, it turns out that it is O�h4� in the Hager
family of Runge–Kutta methods. That is, one can readily verify that
the RK coefficients of the Hermite–Simpson method satisfy the
standard O�h4� conditions of Butcher [40] in addition to those of
Hager [7],

X
d2
i =bi�1=3;

X
d3
i =b

2
i �1=4;

X
biciaijdj=bj�5=24

X
cid

2
i =bi�1=12;

X
diaijdj=bj�1=8

where

ci :�
X3

j�1

aij � �0; 1=2; 1� dj :�
X3

i�1

biaij � �1=6; 1=3; 0�

Hence, under his assumptions, Hager’s theorem guarantees a
convergence of theHermite–Simpsonmethod to the optimal solution
at anO�h4� rate [7]. A theorem similar to Hager’s has been obtained
by Gong et al [19,41,42] for the Legendre pseudospectral method. It
is important to note that the technical assumptions necessary for the
validity of Hager’s theorem are quite different from those required
for the convergence of the Legendre pseudospectral method. If a
given problem meets all the conditions for both theorems to hold,
then the Legendre pseudospectral method provides superior
convergence properties with respect to any RK method. Numerical
experiments confirm this point [42–45]; consequently, the Legendre
pseudospectral method has become an attractive choice for an
upgrade of the OTIS software package [12]. Of course, the software
package DIDO uses pseudospectral methods exclusively, and
independent tests [30,46,47] of DIDO with other tools have
consistently shown its superior performance. Despite these favorable
results for pseudospectral methods, we note that it is not a panacea.
Thus, it is quite possible for a given problem to satisfy the
assumptions of Hager’s theorem but fail those of the Legendre
pseudospectral method. In such situations, the Hermite–Simpson
method can be superior to the Legendre pseudospectral method.

The strongest convergence theorems provide rates of convergence
of estimated errors and not the values of the true errors. That is, if the
rates of convergence of any two methods are the same, they are
mathematically equivalent even if anecdotal examples show
differences in the values of true errors. Thus, a convergence theorem
serves the purpose of an a priori selection criterion for the a2B
algorithm. Because no convergence theorem provides the true error
values, it nonetheless leads to the following set of self-tests on the
accuracy of results.

A. Self-Test on Optimality
For the a2B algorithm to work as a pure antialiasing scheme, we

require three conditions as follows:
1) the discrete solution pairs, fxi;uigni�0, must exactly lie on the

optimal trajectory;
2) the continuous-time reconstructions of the controls, ui�t�,

t 2 �ti�1; ti�, must be exact over each Bellman segment; and
3) the propagation of the initial value problem (see step 3) must be

exact.
In practice, all three conditionswill be violated to varying levels of

precision. The combined effect of all these violations from a desired
precision can be detected, and thereafter corrected, using the
following tests.

If fxi;uigni�0 from step 1 does indeed lie on the exact optimal
trajectory, and if there were no errors whatsoever in generating the

Bellman-sequenced trajectory, xB�t�, t 2 �t0; tf� (see step 5), then,
according to Bellman’s principle of optimality we must have

x B�ti� � xi; i� 0 � � � n (2)

Any violation of Eq. (2) is, therefore, a violation on optimality. A
measure of this violation can be written in terms of any error norm;
for example,

� xnopt :� 1
n

Xn
i�0

kxB�ti� � xik (3)

When convergence is assured by a proper method, we have
limn!1� xnopt! 0. In practice, � xnopt� 0 cannot be achieved with
infinite precision; hence, we must limit n to some sufficiently large
value that leads to a � xnopt less than some desired tolerance. Because
every element on the right-hand side of Eq. (3) is already computed
as part of the a2B algorithm, it is clear that this equation provides a
self-test on optimality in terms of first principles itself whenever
fxi;uigni�0 is recalculated.

In the same spirit, an estimate of suboptimality is obtained from
the differences in the values of the Bellman-sequenced cost
functional and the discrete cost of each run.Denoting these quantities
as J B and J n, we have

� J n
opt :� jJ B � J nj (4)

as a measure of suboptimality. As with Eq. (3), we have
limn!1� J n

opt! 0.

B. Criterion for Selecting Bellman Segments
Suppose that the initial condition x�t0� � x0 is given and/or

computed exactly (i.e., no round off errors in the ideal case). Then,
from step 3 of the a2B algorithm, we have

x 1�t1� � x0�
Z
t1

t0

f�x1�t�;u1�t�� dt (5)

where t7!u1 is the control interpolated over �t0; t1� using fuigni�0 as
data points. Note that this interpolation need not be continuous, in
which case, Eq. (5) defines an absolutely continuous (Carathéodory)
solution [48] for Eq. (1). Allowing discontinuities inu1��� is done not
merely for greater mathematical generality, but to make our
algorithm applicable to many practical problems. A case in point is a
typical orbit transfer problem that has discontinuous optimal controls
in the form of switches (see Fig. 2). Imposing continuity conditions
for the controls will render such solutions nonoptimal. Regardless,
x1��� will not be perfectly optimal since integration in Eq. (5) is not
perfect even if t7!u1 is exactly optimal (which can happen in
practice, as in bang-bang control systems). Thus, from Bellman’s
principle, we have

x 1�t1� ≠ x	�t1� (6)

where x	�t1� is the theoretically exact (and frequently, unknown)
optimal state at time t1. Nonetheless, we can control the error
kx1�t1� � x	�t1�k to within any given � > 0 if the interpolation error
in the controls ku1��� � u	���kL1 and the Bellman segment t1 � t0
are sufficiently small. A precise statement of this intuition is given by
the following theorem.

Theorem 2: Let f�x;u� be Lipschitz continuous in the domain of
feasible �x;u� with Lipschitz constants Lipfx and Lipfu,
respectively. Let

� :� ku1��� � u	���kL1
�
Lipfu
Lipfx

�
(7)

For any given � > 0, if

�t1 � t0� �
W�r�
Lipfx

(8)
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then kx1�t1� � x	�t1�k � �, whereW�r� is the LambertW function
(see the Appendix), and r is the ratio, �=�.

Proof: See the Appendix.
Remark 2.1: If �� �, we haveW�1� � 0:56714; . . . . Hence, under

this special situation, if

�t1 � t0� �
1

2Lipfx
) �t1 � t0�<

W�1�
Lipfx

Thus, it appears that, analogous to the Nyquist–Shannon guidelines
in choosing a sampling frequency, Lipfx acts as a fundamental
frequency of the dynamical system that, in conjunction with Eq. (8),
provides a measure for choosing Bellman segmentations.

C. Accuracy of Controls
As noted in Sec. IV.B, a high accuracy in reconstructing the states

is possible by allowing the controls to be interpolated
discontinuously over each Bellman segment, �ti; ti�1�. Nonetheless,
as a result of Eq. (6), we have

u 2�t1� ≠ u1�t1� (9)

in general. Although it is possible to solve optimization problems by
enforcing the controls to be continuous across theBellman segments,
this may reduce accuracy for the same reason that the optimal control
may, in fact, be discontinuous at t1. It turns out that allowing the
controls to be discontinuous across the Bellman segments has a very
practical advantage in terms of a yet another self-test on optimality.
That is, suppose that the (unknown) optimal control was continuous
at t1. Then, Eq. (9) is an indicator of nonoptimality, and the quantity
ku2�t1� � u1�t1�k can be taken as a measure of the nonoptimality of
the control. Thus, in addition to Eqs. (3) and (4), we take

� unopt :�
XNB�1

k�1

kuk�1�tk� � uk�tk�k (10)

as a third indicator and measure of suboptimality of the overall
Bellman-sequenced trajectory.

It is very important to note that we do not take Eq. (10) as a sole test
of optimality but as part of the menu of tests resulting from a first-
principles’ application of Bellman’s principle. Thus, if the optimal
controls are discontinuous at exactly the endpoints of the Bellman
segments, Eq. (10) will provide an incorrect measure of
suboptimality. A simple remedy to solve this problem would be to
implement the a2B algorithm using a different set of Bellman
segments so that in the unlikely event that the optimal controls were
discontinuous at exactly the segment endpoints of the first
implementation, they would be continuous at the endpoints of the
second segmentation. This assertion can be guaranteed if the optimal
controls are discontinuous over a finite number of points and do not
exhibit the Fuller phenomenon [49]. Hence, we include this
condition as part of the assumption for the validity of the a2B
algorithm.

D. Universality of the Optimality Tests
The three optimality tests given by Eqs. (3), (4), and (10) can be

used to test the optimality of any computed trajectory whether or not
antialiasing is sought. Thus, unlike tests on the Pontryagin
extremality that require computation of the dual variables, the tests
we propose require only primal variables. Consequently, if a direct
method is used, and a covector mapping theorem is unavailable to
determine the duals, the optimality of the computed trajectory can
still be quickly checked by the primal tests we proposed in this paper.
Clearly, if dual variables are also available, then a robust verification
of optimality of the computed solutions is possible by combining the
battery of tests provided by the minimum principle in concert with
Eqs. (3), (4), and (10). Furthermore, unlike the minimum principle
which provides a negative test on the optimality of the solution,
Eqs. (3), (4), and (10) provide a quantitative measure of deviation
from optimality. These ideas are further illustrated in Sec. VI.

E. Enhancing the a2B Algorithm via Node Clustering
From the developments of the preceding sections, it is clear that

the proposed ideas can be used in conjunction with any
computational method provided that it meets the essential
qualifications of pointwise convergence. For example, the a2B
algorithm can be implemented in conjunction with the Hermite–
Simpson method. Because a motivation for the a2B algorithm is a
long time span, it is clear that we would benefit from long Bellman
segments by lessening the effects of accumulation errors.
Furthermore, according to Theorem 2, the error per Bellman
segment depends upon two critical quantities, namely, 1) the
problem dynamics (through its Lipschitz constants), and 2) the
accuracy of the control interpolation [cf. Eq. (7)].

Thus, for any given problem (i.e., given Lipschitz constants), the
accuracy of the optimal state trajectory, as measured by �, depends
upon the accuracy of the control interpolation, as measured by �. To
have a small �, we need to capture the high-frequency components of
the control trajectory. According to Theorem 1, this normally means
that we need to have a high sampling rate (i.e., fine mesh) over the
entire time span of control interpolations. However, our proposed
a2B algorithm only uses the portion of the control trajectory fuigni�0
that falls within the time interval where the differential equation is
propagated, say, �t0; t1� (see step 3 of thea2B algorithm). This implies
that under the continuing assumption of pointwise convergence, it
would be desirable to have a mesh refinement strategy that is biased
to produce a finer grid close to the initial time. In examining Figs. 4,
6, and 7, it is clear that this condition is met by the method we have
used to solve problem T. This is the Legendre pseudospectral
method. In fact, pseudospectral methods based on polynomial
interpolation have a natural property of node clustering at the initial
time [31]. That is, the average spacing between points over �t0; t1� is
O�n�2� in contrast to a uniform grid which produces a mesh size of
O�n�1�. This property of pseudospectral methods is the reason why
all three interpolations of Fig. 4 generate negligible errors over the
initial time period of approximately ��1;�0:8� (see Fig. 5) as all the
high-frequency components of the control signal are sufficiently
represented by the natural node clustering of the Legendre
pseudospectral method. This last statement is evident by an
inspection of Fig. 6.

V. Low-Thrust Preliminaries
Low-thrust technology is substantially varied. The design and

capabilities of the engine, the physics of the propulsion, and the type
of power plant all affect the optimal trajectory design. For detailed
mission analysis, these complexities must all be considered [50–53].
During preliminary stages of mission design, it is desirable to
perform low-thrust trajectory analysis without tying it to a particular
propulsion system so that the merits of the trajectory can be
independently assessed. For minimum-fuel considerations, this
translates to formulating space trajectory optimization problems as
L1-optimal control problems [8]. A p–q family of coplanar L1-
optimal control problems can be cast as (see Fig. 10)

x T :� �r; �; vr; vt� uT :� �ur; ut� u 2 U�q�
U�q� :� fu 2 R2:kukq � umaxg

O�p�

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Minimize Jp�x���;u���; tf� �
R tf
t0 ku�t�kp dt

Subject to _r� vr
_�� vt

r

_vr � v2
t

r
� �

r2 � ur
_vt �� vrvt

r
� ut

e0�t0;x0� � 0
ef�xf� � 0
tf � tU

where tU 
 tmin is an upper bound on the final time,
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1
p
� 1
q
� 1; p 2 f1; 2g

and the functions for the endpoint conditions,

e0�t;x� :�

t

a0��v2
r � v2

t �r � 2� � r
r�1� e0 cos�� � !0�� � �vtr�2

vr�1� e0 cos�� � !0�� � e0vt sin�� � !0�

0
BBBB@

1
CCCCA

ef�x� :�
af��v2

r � v2
t �r � 2� � r

r�1� ef cos�� � !f�� � �vtr�2

vr�1� ef cos�� � !f�� � efvt sin�� � !f�

0
BB@

1
CCA

describe the initial and final manifolds for problemO�p� in terms of
the initial �a0; e0; !0� and final �af; ef; !f� orbital elements,
respectively. Except for its resemblance to the dynamic model, this
problem formulation is different in every respect when compared to
the continuous-thrust problem posed byMoyer and Pinkham [2] and
popularized by Bryson and Ho [3]. Surprisingly, what is not widely
discussed in many texts (barring optimization books [54]) is the
potency of scaling and balancing equations. As amatter of fact, many
of the reported difficulties in low-thrust optimization can be
immediately addressed by a proper scaling of the optimal control
problem [35,55]. Hence, we address this issue first.

A. Scaling and Balancing Equations
Canonical units are frequently used to scale the orbit dynamical

equations [2–4]. Although useful in some problem analyses, these
units may not be entirely appropriate for certain applications. In such
situations, it is useful to solve problems using “designer units.” That
is, we would like to scale each of theNx variables in x 2 RNx , theNu
variables in u 2 RNu , and time t in some arbitrary, but appropriately
chosen units. Thus, we define

�r :� r=R; �� :� �=A; �vr :� vr=Vr; �vt :� vt=Vt
�ur :� ur=Ur; �ut :� ut=Ut; �t :� t=T

where R, A, Vr, Vt, Ur, Ut, and T are arbitrary numbers chosen to
serve a desirable outcome. These numbers are “units” for the

indicated quantities. We now rewrite problemO�p� in terms of �r, ��,
�vr, etc. This is done easily by the inverse transformation,

r� �rR; �� ��A; vr � �vrVr; vt � �vtVt

ur � �urUr; ut � �utUt; t� �tT

It is trivial to show that _r� vr is now replaced by

d�r
d�t
�

�
VrT

R

�
�vr (11)

In the same spirit, the equation for _vt is replaced by

d�vt
d�t
��

�
VrT

R

�
�vr �vt

�r
�

�
UtT

Vt

�
�ut (12)

Thus, the dynamical equations aremodified as a result of introducing
scaling factorsR, T, etc. These designer units (or scaling factors) can
now be chosen in a manner that balances the variables and/or the
equations conducive to numerical analysis. Note that there is no need
to choose the velocity units, Vr and Vt, to be the same, nor do they
need to be equal to distance units divided by time. Such a practice
leads to canonical units:

Vr � Vt �
R

T
� �T
R2 � TUt � TUr

That is, the units for velocity, acceleration, etc., are all derived from
the units of the fundamental quantities such as distance and time, and
the corresponding units are chosen to render the scaled equations
identical to the unscaled equations. Although such scaling based on
units of the fundamental quantities has highly desirable properties
and is physically appealing, it is not necessarily the best choice for
computation, particularly for low-thrust applications. For example,
in terms of canonical units based on the Earth’s radius of
R� 6378 Km, a unit of acceleration is the standard g0� 9:8 m=s2.
Thus a force unit for a 1000 kg spacecraft would be 9800 N. Now, an
NSTAR engine [56] generates about 90 mN of maximum thrust
force. Thus, in canonically scaled units of force, the NSTAR engines
generate 9
 10�6 units of maximum force which is, clearly,
imbalanced with the other quantities (e.g., �r� 1). Now, consider a
designer unit where the unit of force is set to 90 mN. In this case, the
maximumNSTAR engine thrust is just one force unit. Of course, the
dynamical equations are no longer in the standard form as suggested
in problem O�p�; rather, they have to be rewritten in the balanced
form as in Eqs. (11) and (12).

The designer units used in solving all the examples in the
remaining part of the paper are

R� r0 A�10 Vr�0:01
�����������
�=r0

p
Vt�0:1

�����������
�=r0

p

Ur�0:001��=r2
0� Ut�0:001��=r2

0� T�
�����������
r3

0=�
q

(13)

where r0 is the initial value of r�t�, whatever it might be in traditional
units. These noncanonical units were chosen simply by inspection of
the problem data.

B. Time-Bound Time-Free Trajectories
From the physics of the problem, it is apparent that a time-free

minimum-fuel trajectory could require an infinite time. An infinite
horizon problem not only creates a computational problem, it also
generates some deep theoretical issues on existence and uniqueness
of solutions. These problems are simply circumvented by imposing
an upper bound on the transit time by setting tf � tU (with t0� 0) as
evident in the problem formulation of problem O�p�. Obviously,
tU 
 tmin, where tmin is the cost obtained by solving the corres-
ponding minimum-time problem. This is one reason why we discuss
minimum-time trajectories in the next section. In any event, it is
apparent that if tU � tmin, then theminimum-time andminimum-fuel
trajectories are the same.When problemO�p� is parameterized by tU

[in which case, we would write it as problemO�p; tU�], the resulting
solutions are not “linear” for small perturbations of tU 2 �tmin;1�.
That is, as tU is varied continuously upward from tmin, the solutions
exhibit “jumps” as tU crosses certain thresholds. This is essentially a
result of the fact that the problem is nonconvex (any nonlinear
equality implies nonconvexity). This property of solution jumps for
nonconvex problems evenwhen nonbinding constraints are removed
or introduced is a well-known phenomenon in optimization [54].
Thus, for example, if the optimal final time t	f in a time-bound

minimum-fuel trajectory is such that t	f < t
U (as is to be generally

expected), then, despite the fact that the condition tf � tU is
nonbinding, increasing tU (or removing it) does not produce the same
solution (both theoretically and computationally). Thus, a proper

rt

u

v

(0, 0)

�

�

reference

Fig. 10 Schematic of the parameters for problem O�2�.
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way to characterize these trajectories is not in the classical sense of
time-free trajectories but as time-bound time-free trajectories.

VI. Illustrative Results
Having established the importance of minimum-time trajectories

as a first step toward solving minimum-fuel problems (especially for
industrial strength problems), we address this problem first.

A. Minimum-Time Trajectories
For the purpose of illustrating themain ideas, we choose the initial

and final orbits to be circular and take the control space U to be a
Euclidean box (this is the same as settingq�1 inU�q�).We use the
familiar canonical units for a physical description but use Eq. (13) to
balance the problem. Thus, we have

x T :� �r; �; vr; vt� uT :� �ur; ut�
u 2 U�1� :� fu 2 R2:kuk1 � 0:01g

�minT�

8>>>>>>>>>><
>>>>>>>>>>:

Minimize J�x���;u���; tf� � tf
Subject to _r� vr

_�� vt
r

_vr � v2
t

r
� 1

r2 � ur
_vt �� vrvt

r
� ut

�r; �; vr; vt��0� � �1; 0; 0; 1�
�r; vr; vt��tf� � �4; 0; 0:5�

A candidate discrete-time optimal transfer trajectory for n� 30
nodes is shown in Fig. 11. It is clear that this is not even a physically
meaningful trajectory. We now apply the a2B algorithm using this
purportedly poor solution. The resulting antialiased trajectory is
shown in Fig. 12. It is apparent that this trajectory is more realistic.
The closed-loop control corresponding to this antialiased solution is
shown in Fig. 13. Not only is this antialiased solution meaningful, it
is in fact very close to an optimal solution. To illustrate this point in
terms of the theory developed in Sec. IV, consider applying the
optimality test given by Eq. (3) to explore the optimality of the 30-
node solution. This generates

� x30
opt�

1
30

X30

i�0

kxB�ti� � xik2� 0:0317

The small number [in comparison to kxB���kL2] indicates that the 30-
node solution may be very close to the optimal solution. Using the
computed costs of J 30� 48:142 and J B � 48:346, we have a
measure of suboptimality given by Eq. (4) as

� J 30
opt :� 0:204TUs (14)

As theorized in Sec. IV, this number would not have been small (in
comparison to either J 30 or J B), if the antialiased solution was not

very close to the optimal. Simply put, Figs. 12 and 13 illustrate
Bellman’s principle in action for a converged solution. To further
validate convergence, we apply the a2B algorithm with 50 nodes.
The error � x50

opt reduces to 0.0243 and the new cost is
J 50� 47:809< J 30. Both these quantities indicate convergence.
Note that all of these tests are only primal in nature and do not
require dual variables.

�4 �2 0 2 4
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Fig. 11 A 30-node open-loop transfer trajectory for problem minT.
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Fig. 12 An antialiased 30-node closed-loop transfer trajectory for
problem minT.
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Fig. 13 An antialiased 30-node closed-loop control solution for problem minT.
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For the problem under study, the average run time for generating
open-loop time-optimal solutions on a low-end PentiumM (1.6 GHz
with 256 MB of RAM) laptop was about 0.3 s. That is, even without
optimizing the code itself, solutions can be obtained in fractions of a
second.As it is not too difficult to show thatLipfx for problemminT
is substantially less than 1

2�0:3� s�1, the 0.3 s of run time easilymeet the

condition of Theorem 2 for declaring the antialiased solution shown
in Figs. 12 and 13 as a closed-loop solution. Further details on this
new way of generating closed-loop solutions are described in
[24,25].

The apparent infeasibility of the trajectory shown in Fig. 11 is, in
fact, due to an aliasing problem. To illustrate this point, a 300-node
open-loop state trajectory and control solution are shown in Figs. 14
and 15. Comparing Figs. 12–14 and Figs. 13–15, it is clear that the
controls and trajectories are nearly the same. In the case of the 300-
node solution, the number of optimization variables is Nn�Nx�
Nu� � 1� 300�4� 2� � 1� 1801, while the corresponding num-
ber for the 30-node solution is 181, obviously, a reduction by an order
of magnitude. Although 1801 optimization variables is not large by
current standards, the purpose of this example is similar to that of the
test problem, problem T, discussed earlier, that is, to show that we
can obtain nearly the same solution with a substantially lower
number of optimization variables. This is one of the main reasons
why multi-agent problems [8,27–30] can be solved with the same
ease as single-agent problems.

The two solutions shown in Figs. 12–14 would not have been
nearly the same in case they were not nearly optimal. As a matter of
further validation and comparison, consider applying standard dual
optimality tests generated by an application of Pontryagin’s
minimum principle. The control Hamiltonian for problem minT is
given by

H��;x;u� :� �rvr � ��
vt
r
� �vr

�
v2
t

r
� 1
r2� ur

�

� �vt
�
� vrvt

r
� ut

�

Minimizing H over U�1�, we get

ur�t� �

8<
:
�0:01 if �vr �t� 
 0
singular if �vr �t� � 0
�0:01 if �vr �t� � 0

(15)

ut�t� �

8<
:
�0:01 if �vt�t� 
 0
singular if �vt�t� � 0
�0:01 if �vt�t� � 0

(16)

The switching functions together with the candidate optimal controls
are shown in Figs. 16 and 17. It is clear from these plots that the
controls indeed satisfy the Hamiltonian minimization conditions of
Eqs. (15) and (16).

The computed minimum transfer time for the 300-node solution is
47:706TUswhile the corresponding transfer time for the antialiased
30-node solution is 48:346TUs. That is, the cost of the antialiased
solution is larger than the “full scale” solution by only about 1.34%.
That the extremal satisfies Bellman’s principle within numerical
tolerances indicates that we have indeed found an optimal solution
with only 30 nodes. All of these points clearly validate the superior
performance of the a2B algorithm for orbit transfer applications.

We now set the control bound umax to 0.002 and resolve
problemminT. It is apparent from the physics of the problem that the
new trajectory will take many more revolutions than when umaxwas
set to 0.01. This is also borne out by the solution we obtained from
our a2B algorithm as shown in Fig. 18. This solution was obtained
using 100 nodes. By simple analogy to the higher-thrust solution, it
can be argued that the 100-node antialiased solution is equivalent to a
1000-node generic solution. The controls corresponding to Fig. 18
are shown in Fig. 19. The average run time to obtain a 100-node
solution (also with unoptimized code running on low-end machines)
was about 6 s. As a matter of completeness a plot of the state
trajectories is shown in Fig. 20. This plot features many of the
information-theoretic concepts associated with high-frequency
content and potential aliasing problems discussed earlier.

B. Minimum-Fuel Trajectories
We now solve problem O�p� for p� 1 and 2 with the rest of the

parameters set the same as problemminT. To bound the scope of the
paper, we limit our discussions to the casewhen umax� 0:01for both
U�1� and U�2�.

Consider problemO�1�. This problem represents a minimum-fuel
orbit transfer problem for a spacecraft equipped with multiple
thrusters [8]. We choose
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Fig. 14 A 300-node open-loop transfer trajectory for problem minT.
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Fig. 15 A 300-node open-loop control solution for problem minT.
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tU � 55> 48:142� J 30
minT

to ensure that any potential infeasibility is not due to an improper
selection of an upper bound on themaximumallowable transfer time.
We now use the subscript minT on the value of the cost function for
problemminT to distinguish it from the value of the cost function for
problem O�p�.

Shown in Fig. 21 is the computed optimal trajectory for n� 30
without the benefit of the a2B algorithm. As in the minimum-time
case discussed in Sec.VI.A, it is clear that this is not even a physically
meaningful trajectory. On the other hand, when we apply our a2B
algorithmwith the samen� 30, the result is dramatically different as
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Fig. 16 Switching function and ur�t� for problem minT.
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Fig. 17 Switching function and ut�t� for problem minT.
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Fig. 18 Low-thrust antialiased transfer trajectory for problem minT

modified for umax � 0:002.
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Fig. 19 Low-thrust antialiased 100-node controls corresponding to
Fig. 18.
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Fig. 20 Antialiased 100-node state trajectories corresponding to
Fig. 18.
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Fig. 21 A 30-node open-loop transfer trajectory for problem O�1�.
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evident in Figs. 22 and 23. Because the bound tU is active (see
Fig. 23), this solution corresponds to a time-fixed minimum-fuel
orbit transfer. In other words, the solution shown in Figs. 22 and 23
corresponds to a minimum-fuel solution incurred at a penalty of

55:000� 48:142� 6:858TUs

or about 14% increase in transfer time. The fuel cost for
problem O�1� was computed to be

J 1� 0:57815

whereas the corresponding fuel cost for problem minT was
determined to be equal to 0:95050. Consequently, we conclude that a
fuel savings of about 39% is achieved at the price of about 14%
increase in transfer time.

Finally, we consider problem O�2� and choose tU � 100. This
problem represents a minimum-fuel orbit transfer problem for a
spacecraft equippedwith a single thruster (see Fig. 10). Note also that
the cost function in problemO�2� is not quadratic; in fact, quadratic
costs do notminimize fuel [8].As in the previous cases, the computed
optimal trajectory for n� 30 appears similar to Fig. 21; however,
after an application of our a2B algorithm and keeping n� 30, the
result is physically realizable as evident in Fig. 24. The
corresponding controls are shown in Fig. 25. In conformance with
Fig. 10, the controls are plotted in the usual magnitude and direction
variables.

It is apparent from Fig. 25 that the bound tU � 100 is not active.
The computed optimal “free” time was t	f � 80< tU with fuel cost

J 2� 0:49327. In terms of the notion developed in Sec. V.B, this is a
time-bound time-free minimum-fuel solution and not a classical
time-free solution. A fairly comprehensive discussion of these new
principles on minimum-fuel optimal control and their relationships
to the Bellman and Pontryagin frameworks may be found in [8].
Further results on problems minT,O�1�, andO�2� are discussed by
Mendy [29] who also uses equinoctial element sets to capture the full
scope of three-dimensional orbital maneuvers for multiple
spacecraft.

VII. Conclusions
The antialiasing Bellman (a2B) algorithm proposed in this paper

solves low-thrust trajectory optimizations with embarrassing ease.
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Fig. 22 An antialiased 30-node closed-loop transfer trajectory for
problem O�1�.
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Fig. 23 An antialiased 30-node closed-loop control solution for
problem O�1�.
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Fig. 24 Antialiased 30-node closed-loop transfer trajectory for
problem O�2�.
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Fig. 25 An antialiased 30-node closed-loop control solution for problem O�2�.
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Although all the solutions were obtained using pseudospectral
methods, the a2B algorithm is, in principle, independent of
pseudospectral methods. Thus, the algorithm can be implemented in
conjunction with any existing tools, methods, or software that are
capable of legitimately solving low-scale trajectory optimization
problems. Because these problems can typically be solved in
fractions of a second, the a2B solutions are in fact closed-loop
solutions for most applications. It is this closed-loop feature of the
algorithm that provides a high level of accuracy via an antialiasing
process.

The essential principle behind the simplicity of the proposed
method can be framed in terms of fundamental optimal control
theory as follows: in theHamilton–Jacobi–Bellman theory, solutions
are sought over the entire domain (i.e., the entire state space) whereas
in the Pontryagin framework, solutions are sought only over a line or
a tube. In the proposed framework, solutions are sought merely near
the initial conditions whereas the full solution is sequentially
determined by moving the initial conditions toward the final
conditions by a first-principles’ application of Bellman’s principle of
optimality. Consequently, self-tests on optimality follow directly
from first principles without the need for computing costates or
solving the Hamilton–Jacobi–Bellman equation.

Appendix
I. Lambert W function

The multivalued function x↠W�x�, given implicity by

x�W�x�eW�x� (A1)

is called the Lambert W function. A detailed description of this
function along with its historical origins and many applications are
described in [57]. For x 
 0,W�x� is single valued (see Fig. 26).

II. Gronwall’s Lemma
Let �t0; tf�7!y�t� 2 R be an integrable function that satisfies

Gronwall’s inequality [58],

y�t� � a�t� �
Z
t

t0

b�s�y�s� ds

where a and b are continuous, nonnegative, bounded functions with
t7!a�t� nondecreasing over the interval, �t0; tf�; then

y�t� � a�t�eB�t�

where

B�t� :�
Z
t

t0

b�s� ds

For a proof of this lemma, please see [58].

III. Proof of Theorem 2
In the same spirit as Eq. (5), we have

x 	�t1� � x0�
Z
t1

t0

f�x	�t�;u	�t�� dt (A2)

Subtracting Eqs. (5) and (A2) we get

kx1�t1��x	�t1�k�
����
Z
t1

t0

f�x1�t�;u1�t��dt

�
Z
t1

t0

f�x	�t�;u	�t��dt
�����

Z
t1

t0

kf�x1�t�;u1�t��

�f�x	�t�;u	�t��kdt�
Z
t1

t0

�Lipfxkx1�t��x	�t�k

�Lipfuku1�t��u	�t�k�dt�Lipfuku1����u	���kL1�t1� t0�

�
Z
t1

t0

Lipfxkx1�t��x	�t�kdt��Lipfx�t1� t0�

�
Z
t1

t0

Lipfxkx1�t��x	�t�kdt (A3)

where the equality in Eq. (A3) follows from the definition of � given
by Eq. (7). From Gronwall’s Lemma, Eq. (A3) can be written as

kx1�t1� � x	�t1�k � �Lipfx�t1 � t0�eLipfx�t
1�t0� (A4)

From the definition of the Lambert W function, it can be easily
verified that for y, z 2 R�, if z � W�y� then zez � y; hence, from
Eqs. (8) and (A4), we have kx1�t1� � x	�t1�k � �r� ���=�� � �.
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